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1. Introduction

RS models with Standard Model particles in the bulk are a viable possibility for two

reasons. The first is that the solution to the hierarchy problem requires only that the

Higgs particle is on the TeV brane. Standard Model particles can be either in the bulk or

on the brane. The second important feature of RS1 is that the higher-dimensional space,

the fourth spatial dimension, is quite small, only of order 35 times the AdS length. Because

of this feature, gauge bosons can be in the bulk without the coupling being too strong,

since the forces are not very highly diluted. Such models, with the Standard Model in

the bulk and only the Higgs sector on the TeV brane, have phenomenological advantages

that include possibilities for avoiding precision constraints from light quark interactions,

allowing high-scale unification of gauge couplings, and a natural hierarchy of masses [1].

However, studies of the phenomenological consequences of the Kaluza-Klein mode of

the graviton in RS theories have focused primarily on the scenario where all Standard

Model matter resides on the TeV brane (e.g. [2, 3]), or where the Standard Model gauge
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fields and fermions are in the bulk but the top and lighter fermions are all localized at the

same place in the bulk [4, 5]. In more realistic models, top quarks are localized near the

TeV brane and right-handed isospin [6] is gauged. In these models, precision electroweak

constraints are weaker with the consequence that a new decay signature - KK graviton

decay to tops - becomes significant. Previously, electoweak constraints put the graviton

mass above 23 TeV for tops localized very near the TeV brane [4]. The weakened constraints

from the specific model [6] are almost (but not quite) weak enough to allow an observable

KK graviton, and we expect that a modest amount of model-building could lower them

further.

If indeed the Standard Model fields are in the bulk, the first set of resonances to be

discovered will most likely be KK-gluons [7], and possibly other spin-1 KK excitations of

the SM gauge boson. However, although the spin-1 resonance would be quite an exciting

discovery, it will not be sufficient to determine the underlying nature of the model. It

will have the properties of a resonance from a strongly interacting theory that is coupled

primarily to the right-handed top quark, and it might not be readily distinguished on its

own from a purely four-dimensional model. Discovery of the spin-2 resonance, though not

conclusive either, will demonstrate that a Randall-Sundrum type of setup is a more likely

description of new physics.

In this paper, we set out to study the phenomenology of the RS KK graviton when

the light quarks are localized near the Planck brane but the top quarks are localized very

near the TeV brane, as would be expected in any bulk model which with a sufficiently large

top quark mass. We will discuss the collider reach of the KK resonance, as well as ways of

determining its properties. We will not make any assumptions about the minimum value

of the KK mass (as are implied by electroweak constraints) but will simply leave the mass

as a free parameter to see the sensitivity of direct KK graviton searches. In calculating the

collider reach, we assume 100 fb−1 luminosity and perfect top tagging. For realistic case

with some top tag efficiency and potentially with larger luminosity, the estimate of reach

could be obtained from our study easily by scaling.

We find that the primary production mode is through KK gluon annihilation, which

can lead to measurable KK graviton resonances up to about 1.4 TeV, about one-quarter

the mass reach of the model with SM particles confined to the TeV brane. However, the

angular distribution of the decay products when the KK graviton is produced through the

annihilation of two spin-1 gluons is quite distinctive, and should allow for angular determi-

nation with fewer particles than would be necessary in the model with SM particles bound

to the brane. Furthermore, even at large values of the AdS curvature scale, approaching

the Planck scale, we find that the KK graviton has a very narrow width. This is not true

in models with fermions on the brane, since in that case the KK graviton can decay to a

large number of light fermion degrees of freedom. This distinctive feature should be an

advantage that partially compensates for the lower production rate of the KK gravitons in

any given mass range.
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2. Production and decay

We are interested in the production and decay of KK gravitons in an RS model where

all Standard Model fields except for the Higgs boson propagate in the bulk, and the light

fermions are localized near the Planck brane whereas the right-handed top quark is localized

near the TeV brane. The KK graviton is also localized near the TeV brane, and in the dual

CFT this means that it is a composite state with the large N scaling properties of a glueball.

Thus it couples most strongly to other composite states — the Higgs boson, the top quark,

other KK modes, and to a lesser extent, gauge boson zero modes, whose interactions are

suppressed from the 5d point of view by the volume of the fifth dimension. The KK

graviton couples very weakly to light quarks and leptons, because they are localized near

the Planck brane (or in the CFT, they are elementary fields) in order to explain their small

Yukawa couplings and masses and also to shield the theory from large operators violating

precision electroweak constraints.

Thus we expect that hadron colliders will produce KK gravitons through gluon an-

nihilation, and that these gravitons will decay to Higgs bosons, Ws, Zs, top quarks, and

other KK states, the lightest of which are always lighter than the gravitons. Although

production through WW fusion might be possible, we find that it is numerically smaller

than production through gluons.

2.1 Setup

In this section, we derive the relevant interaction terms. The coupling constants depend

on the overlap of the particle wavefunctions in the extra dimension, and for further details

of these calculations we refer the reader to [4]. We take k = 1/L to be the AdS curvature

scale and rc the proper size of the extra dimension. The effective cut-off on the theory

is then µTeV = ke−πkrc , and all interactions with the KK graviton are suppressed by this

scale. k is taken near the Planck scale M4 ≡ 1√
8πGN

, and we leave their ratio M4/k = M4L

a free parameter unless otherwise stated. M4L is proportional to the N of the dual CFT.

We define ν = m/k, where m is the bulk mass for fermion fields; this parameter determines

where the lightest mode of the fermion is localized in the bulk, or equivalently, its admixture

of composite CFT states. We will refer to the localization parameter ν for the top-right

quark as νt,R, and in order to get a heavy top quark, νt,R will be greater than ν for the

lighter fermions. Although we are motivated by the Agashe et. al. paper, we are not

confined by their parameter choice and will allow nut,R to vary over a wide range. All

couplings to the KK graviton can be written in the form [4]

CXXG

∫

d4xhµνT µν
XX (2.1)

where XX indicates either a pair of fermions or gauge fields, hµν is the field for the KK-

graviton, and T µν is the effective 4-d energy momentum tensor. The relevant couplings

for KK graviton production and decay are the graviton coupling to two zero-mode gluons,

to a top-anti-top pair, to two scalars, and to a top and a KK anti-top. In each case, the
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XX T µν
XX cXXG

ss (scalars) 1
2∂µφ∂νφ cssG = 2

(M4L)µTeV

f f̄ (fermions) iψ†σ̄µDνψ cff̄G = 1
(M4L)µTeV

(

1+2ν
1−e−πkrc(1+2ν)

)
R 1
0

dy y2+2νJ2(3.83y)

J2(3.83)

tt̄1 (top+KK-top) iψ†σ̄µDνψ c101
ff̄G

= 1
(M4L)µTeV

√

2(1+2ν)
1−ǫ1+2ν

∫ 1
0 dyyν+5/2 Jν−1/2(xL

1 y)

Jν−1/2(x
L
1 )

J2(3.83y)
|J2(3.83)|

gg (gluons) FµρF ν
ρ cggG = 1

(πkrc)(M4L)µTeV

R 1
0 dy yJ2(3.83y)

J2(3.83) ≈ 0.47
(πkrc)(M4L)µTeV

Table 1: All couplings to the graviton are of the form cXXGhµνT µν
XX

. Terms in Tµν proportional to

ηµν have been dropped, since hµν is traceless.

stress-energy tensor Tµν takes the form

Tµν = 2
∂L

∂gµν
− gµνL (2.2)

and the gµνL piece can be ignored since the KK graviton polarizations are traceless.

The mass spectrum of the KK modes also enters the form of the couplings. The KK

masses take the form xX
n µTeV, where xX

n is a root of the boundary condition for the specific

particle. For gravitons, the boundary condition is J1(x) = 0, and the first root is xG
1 = 3.83.

For gauge bosons when kπrc = 35, the first root is xA
1 = 2.45. For fermions, the boundary

condition is
J−(ν+ 1

2
)(x

L
nǫ)

Y−(ν+ 1
2
)(x

L
nǫ)

=
J−(ν+ 1

2
)(x

L
n)

Y−(ν+ 1
2
)(x

L
n)

(2.3)

For ν > −1/2, this condition is approximately tan(νπ) = tan(xL
n + νπ/2), which implies

xL
n ≈ π(n + ν/2) (ν > −1/2) (2.4)

We collect the interactions together in table 1. The ηµνL term is dropped in the expres-

sion for Tµν . Some of the qualitative features of the couplings are readily understandable.

In all the couplings, the suppression by (M4L) ∝ N arises because the KK graviton has

the N scaling of a glueball state. The factor of 1/µTeV is the local UV scale, and it serves

as a cutoff. The suppression by πkrc in cggG follows because the gauge field has a flat

wave function, indicating that its couplings to the brane-localized KK graviton modes are

suppressed by the volume of the bulk. The fermion coupling cff̄G has a strong dependence

on whether the fermion bulk wavefunction is localized near the TeV brane or the Planck

brane. This dependence is contained in the factor in parentheses (the bessel function in-

tegral only varies by about a factor of 2 as ν varies from −1 to 1). Note that for generic

ν > −1/2, relevant for heavy fermions like the top, which are located near the TeV brane,

the factor in parentheses is of order one. For ν very close to −1/2 it is approximately

1/(πkrc), again the volume suppression of a flat wave function. For ν < −1/2, relevant for

light fermions near the Planck brane, it is exponentially small.

The coefficient cssG for a scalar on the TeV brane is relevant to both the Higgs and

the longitudinal components of the W and Z. This follows from the Goldstone Boson

Equivalence theorem, as we review in appendix A.
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2.2 Electroweak constraints

A specific example is provided by the model of Agashe et al [6], where an additional gauged

SU(2) isospin in the bulk suppresses contributions to the Peskin-Takeuchi T parameter. In

this model, the constraints from the S- and T -parameters are of roughly equal importance,

the contribution to S is

S = 2π

(

v

µTeV

)2

= 0.20

(

5.15 TeV

mgrav

)2

. (2.5)

However, note that the second equality follows from the tree level relation between the

KK-graviton and KK-gauge boson masses in this particular model, so the constraint on the

mass of the KK graviton is indirect. The Higgs makes an additional positive contribution

to the S parameter. The 1σ error on S is about 0.10 [8]. In this model mgrav . 5 TeV will

result in too large a value for S. Negative contributions to S can however partially cancel

this contribution, permitting lower values for the graviton mass. Also, brane kinetic terms

for the graviton can lower its mass relative to the cut-off scale µTeV, making precision

electroweak constraints less restrictive for KK graviton phenomenology. A substantial

brane kinetic term would alter couplings and could lead to interesting phenomenology, but

we will not consider this scenario further.

In fact, there is some theoretical prejudice for a lower cutoff scale, and therefore a

smaller KK graviton mass, since this sets a minimum level of fine-tuning for the Higgs

mass. In particular, if the loop contributions to the Higgs mass are cut off at the warped

down Planck scale, then the Higgs vev is

v ∼ (M4L)µTeV√
2λ

(2.6)

where λ is the Higgs quartic coupling. So, despite the electroweak constraints on the

specific model described above, we will consider µTeV as small as 240 GeV, the standard

model Higgs vev. There are direct constraints that rule out such a small µTeV, but in order

to be as model independent as possible, we will begin with this theoretically motivated

minimum value for µTeV in our scan of parameter space.

2.3 Cross sections

The largest contributions to KK graviton production (and decay) come from gg → G → f f̄

and gg → G → φφ, where the scalar final states are appropriate for either the Higgs boson

or for longitudinal Ws and Zs via the Goldstone boson equivalence theorem. The KK

graviton propagator is

Dµν,λσ(k) =
GµλGνσ + GµσGνλ − 2

3GµνGλσ

2(k2 − m2)
(2.7)

with

Gαβ = gαβ − kαkβ

m2
(2.8)
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Figure 1: Cross section of KK graviton production with M4L = 2.5. Both the cross-section from

gluon fusion gg → G and W boson fusion qq → q′q′WW → q′q′G are shown.

Note that D is traceless over µν and λσ, so the KK graviton does not couple to the trace

of Tµν as expected. The matrix element for gg → G → tt̄ can be calculated by contracting

M = T µν
gluonDµν,λσT λσ

top (2.9)

We compute the cross section and integrate over phase space numerically. The resulting

cross-section for KK graviton production is shown in figure 1. Note that it gives only

the cross-section for production and does not include an additional branching ratio for

subsequent decays, given by the widths calculated in the next section. As we can see, the

production cross section (assuming 100 fb−1) peters out at about 4 TeV. We will compare

to background in the following section to get a better idea of the discovery reach.

The KK gravitons can also be produced by W boson fusion (WBF), though this is only

a small fraction of gluon fusion cross-section. For comparison, the cross-section calculated

by Monte Carlo integration of the WBF process is also given in figure 1.

2.4 Decay rates/width

The width of KK-graviton is dominated by the top quark (due to the large coupling to the

right-handed top quark) and the TeV brane scalars (the Higgs boson and longitudinal W’s

and Z’s). Other decay modes are suppressed by the volume factor 1/(πkrc)
2 ∼ 1/900. The

total width due to all four real scalar degrees of freedom is

ΓZL,WL,h =
1

(M4L)2µ2
TeV

m3
grav

240π
=

(

2.5

M4L

)2 mgrav

320
(2.10)
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L
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L
, h

G -> tt
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1
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Figure 2: Branching Ratios for graviton decay to scalars and quarks as a function of the top-right

localization parameter νt,R. At −0.5 < νt,R < −0.2, the dominant decay is to the Higgs and

longitudinal gauge bosons ZL, W±

L . At νt,R > −0.2, the dominant decay is to tt̄. The decay to a

zero-mode top and a KK anti-top is kinematically allowed in the range −0.5 < νt,R < 0.5. The line

at νt,R corresponds to the specific choice made in [6].

For the tR quark contribution to the width, we find

Γtop =
1

(M4L)2µ2
TeV

(

1 + 2νt,R

1 − e−πkrc(1+2νt,R)

∫ 1
0 dy y2+2νt,RJ2(3.83y)

J2(3.83)

)2
3m3

grav

320π
(2.11)

which is about mgrav/320 for M4L = 2.5 and νt,R = 1. The branching ratios are plotted in

figure 2.

For a range of possible νt,R, the decay to a KK top and a zero-mode top will also be

allowed. From equation (2.4), the mass of the KK top is approximately (1+ νt,R/2)πµTeV;

the mass will be less than the KK graviton mass 3.83µTeV for νt,R < 1/2. Below this value,

the decay width is

Γt1t =
1

(M4L)2µ2
TeV

× (2.12)

×
(

2(1+2νt,R)

1 − ǫ2νt,R+1

)

(

∫ 1

0
dyyνt,R+5/2

Jνt,R−1/2(x
L
1 y)

Jνt,R−1/2(x
L
1 )

J2(3.83y)

|J2(3.83)|

)2
3m3

grav

320π

∣

∣

∣

∣

2pf

mgrav

∣

∣

∣

∣

where pf is the spatial momentum of either outgoing decay product. This kinematic factor

vanishes when the zero mode top and KK top mass sum to the KK graviton mass, so the

decay shuts off at a little below νt,R = 1/2.
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Although for small M4L the widths become large, this is the most favorable limit for

discovery, because the production rate also grows in this limit. In fact, the widths do not

even become very large for small M4L, and even for M4L = 1 and νt,R = 2, the width is

only six percent of the KK graviton mass. This is distinctly different from the case when

the Standard Model is on the brane and the graviton can decay to a wide array of light

fermions. With the Standard Model fermions on the brane, at M4L less than about 2, the

KK graviton cross-section flattens out and the tower of KK modes blur together, no longer

appearing as individual resonances [4].

3. Discovery reach

Before discussing the discovery reach of the KK-graviton, we first consider potential back-

grounds. As discussed above, gg → G1 → tt̄ is the dominant mode so tt̄ production from

the Standard Model is the chief background and is the one we consider in our discovery

reach estimates below.

Another potential source of background could be KK gauge Bosons, which also decay

into tt̄ final states. The most important example is the KK-gluon, which has a much larger

production cross-section and could therefore be one of the the major backgrounds through

the KK-gluon → tt̄ channel. However, we expect the invariant masses of the two resonances

should be quite different. With no brane kinetic terms for the gauge boson, the masses

of the first KK gluon resonance and the first KK graviton resonance differ by a factor of

1.5 (this is also true for the masses of the first KK graviton and the second KK gluon),

which is larger the width of the KK-gluon. Also, as we will discuss in section 4, the angular

distribution of the decay products is different and should help distinguish the spin-1 and

spin-2 modes. For these reasons, we have not included the effect of KK-gluon in our study

of discovery reach.

The channel for graviton decay to scalars (i.e. Higgs and longitudinal W’s and Z’s) has

a smaller branching ratio in the region νt,R & 1, ∼ 30% in the model of ref. [6]. On the

other hand, it could be the dominant mode in the region −1/2 < νt,R < 1. The existence

of such a decay channel could be very important in distinguishing KK-graviton channel

from KK-gluon production, since KK-gluon does not decay into such states. Since the

size of this channel is somewhat model dependent, we will not take it into account in the

following analysis. We expect it will enhance the discovery potential for the KK-graviton

in a generic setup.

Note that an important difference between a KK-gluon and a heavy Higgs state, in

addition to their spins, is the relative decay to weak gauge bosons. Both of them decay

into tt̄ as well as WW , ZZ. For the Higgs, due to the longitudinal enhancement and the

fact that the Higgs mass is proportional to its self-coupling, decays into gauge bosons are

dominant. However, there is no such enhancement for the KK-graviton and tt̄ tends to be

a somewhat larger channel.

The rate for KK graviton production as function of the mass of the KK-graviton

is shown in figure 1. Comparing with the SM tt̄ background, we obtain the reach for

discovery, shown in figure 3. For νt,R = 0, the reach as a function of M4L is roughly

– 8 –
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Figure 3: The s/
√

b = 5 reach as a function of graviton mass and the parameter (M4L). From

top to bottom, the reach is shown for 100%, 10%, and 1% efficient top identification. Different

levels of top IR localization are shown, νt,R = 10.0, 1.0, 0.5, 0.0. Larger νt,R corresponds to a more

IR-localized tR.

parameterized by mgrav = 2.8TeV ×e−0.55(M4L)+0.061(M4L)2 , and for νt,R = 10.0, by mgrav =

3.86TeV × e−0.45(M4L)+0.040(M4L)2 . There is no special significance to the form of this

parameterization. We have assumed 100% efficient top reconstruction. The branching ratio

to tops decreases with decreasing νt,R, so we have plotted the reach for several possible

values of νt,R. The KK-graviton resonance is extremely narrow, even at small M4L, which

cuts down on the background. However, the narrow resonance will be smeared out by

uncertainty in the measurement of the invariant mass of the KK resonance. Thus, even

with a very narrow width, the resonance will have to contend with background events

whose invariant mass is within a few percent of the graviton mass. We have estimated the

effect of this uncertainty by taking the background to be all tt̄ events within 3.0 % mgrav

of the graviton mass, i.e., we have we used the smeared width as the window in which we

compare signal vs background. The smearing we have used σ = E × 3% is a typical value

for ATLAS ([12], Ch. 9).

3.1 Energetic top ID in tt̄ final state

Realistically, we will have to include top identification efficiencies for both the signal and

– 9 –
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the background. Our signal significance, assuming the efficiency for signal and background

are roughly the same, will scale down as the square root of the efficiency. Of course, any

top identification method will also introduce fakes from other Standard Model processes,

and these will effect the signal significance. A detailed study of these effects is beyond the

scope of this paper. In this section, we will discuss new kinematical features of tt̄ decaying

from a heavy resonance, which will bring about uncertainties in top identification. We

comment on possible ways of developing alternative methods of identifying tops in this

type of processes. Due to such uncertainties and potential room for improvement, we

present the KK-graviton discovery reach for a set of benchmark values of top identifcation

efficiencies.

Studies focused on identifying SM tt̄ produced near threshold typically yield a low

efficiency [12 – 16]. For example, in the ATLAS study, the combined efficiency of the semi-

leptonic and pure leptonic channel is about 10% [14]. Since we are interested in a region

which is far away from the tt̄ production threshold, we expect the characteristics of the tops

will be different. Top identification in this kinematical regime is critical to KK graviton

discovery.

The simplest method for top identification would be to construct the invariant mass of

the top quarks from their well separated decay products [11 – 13]. Doing this requires ∆R,

which measures the angle between the b quark and lepton (for semileptonic decay) or the

maximal angle with the jet (for purely hadronic decay), to be greater than 0.4 so that the

final states are identified as separate jets and a reasonably accurate invariant mass can be

calculated. In figure 4, we show a Monte Carlo for the expected ∆R for various values of

the KK graviton mass. We see that in all cases where we can hope to find the KK graviton

resonance, a sizable fraction of the events have sufficiently large separation, which is very

promising [19].

This method might well suffice for top identification in the mass regime for which

discovery is possible. To enhance statistics, in addition to the conventional method, we

can imagine other methods for top identification. In the case of a heavier KK-graviton, we

expect a sizable amount of the event will have one or two top quarks highly collimated,

especially if we use a somewhat larger cone size, for example 0.7 for mgrav & 2.5TeV , see

figure 4. If so, we expect they will show up in the form of one or two massive jets, which

typically have a lepton in them. Without reliable top identification to distinguish it from

a QCD jet, we will have to deal with a much bigger jet background that would make the

collimated top quarks unobservable. One possibility is that we could use a massive jet

algorithm, for example [17], so that all the decay products of each top that fall within

the jet cone have a large invariant mass. However, QCD could also produce massive jets

via off-shell partons and its contribution could be significant [18]. For this reason, an

alternative method, based on the different substructure of top jets and QCD jets could

be useful. Such substructure could be probed, for example, by using finer granularity on

the tracks which would provide additional information on the substructure of the top-like

objects. Given the importance of the energetic top signal, we consider further detailed

study on the experimental viability of such a signature to be very worthwhile.

There could be room for improvement in the top identification efficiency. First of all,
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the top quarks produced from the KK resonance will have significantly different kinematics

compared with the threshold production region considered in the studies [12 – 16]. For

example, the top quarks produced from KK graviton decay will tend to be much harder

(pt
T ∼ 0.5mreson), and therefore less trigger suppressed. On the other hand, large boosts

will tend to make the top decay products more collimated. However, as can be seen from

figure 4, within the range of mass we are interested in, this does not represents a significant

reduction in the signal rate.

Notice that our focus is on identifying tt̄ resonance, rather than fully reconstructing all

the decay products of top quark. Therefore, one could also explore alternative strategies,

such as applying a looser definition of the top quark, including less focus on b-tagging

and a relaxed W reconstruction condition. For highly boosted top quarks, one could also

attempt to improve the efficiency by identifying the tops as massive fat jets with some

substructure. Of course, all of these methods will introduce new backgrounds which need

to be included in the analysis.

Since the top identification efficiency is uncertain, in figure 3 we have plotted the KK-

graviton discovery reach for efficiencies of 1% (the minimum expected), 10% (as in the

quoted studies), and 100%. We see that for 1% efficiency, the reach is typically around

mgrav ∼ 1 TeV. Results for any other efficiency could be obtained by scaling s/
√

b by
√

eff1
eff2

.

Since the cross-section approximately satisfies σ ∝ (M4L)−2, this can be compensated

for by a rescaling of M4L → M4L
(

eff1
eff2

)1/4
. For example, a reach of mgrav = 2TeV

at M4L = 1.8 with 100% efficient top identification corresponds to the same reach at

M4L = 1 with 10% efficiency, as one can verify by inspection.

4. Spin measurement

The channel qq̄ → V → tt̄ will have the characteristic distribution of 1 + cos2 θ since it is

dominated by the transverse mode of vector boson V . On the other hand, the KK-graviton,

produced through gluon fusion, will have a 1 − cos4θ dependence. This leads to a distinct

difference from a spin-1 resonance in the cross-section near forward and backward scattering

and could in principle allow one to rule out a spin-1 particle with O(100) reconstructed top

pairs. A generic sample of 100 tt̄ events, binned in 10 bins from cos θ = −1 to cos θ = +1,

is shown in figure 5. The χ2/ndof for the spin-2,spin-1, and spin-0 distributions shown is

0.99, 3.7, and 2.1, respectively, where the number of degrees of freedom is ndof = 10. The

expected number of bins is shown for a spin-2, spin-1, or spin-0 resonance. The resolution

is lower at near forward or backward scattering, requiring a cut on pseudo-rapidity η > 2.5.

We have taken this into account by conservatively assuming all gluons are as boosted as

kinematically allowed, so we cut out events with η > 2.5 − ln 2 in the graviton rest frame.

As a result, some events have been cut from all three distributions in the two extreme bins.

A spin-0 distribution is more difficult to rule out than a spin-1 distribution, and would

require more events.

The fact that the cross-section σgg→G→tt̄ vanishes at cos θ = ±1 follows from conser-

vation of angular momentum. Of the five polarizations for the KK graviton, only the three
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Figure 4: Distributions of ∆R of top decay products for various KK masses.

with Lz = ±2, 0 can be produced by the gluons. Moreover, the incoming and outgoing

state must have total angular momentum l = 2, so the KK graviton cannot decay to an

s-wave top-pair, but instead must decay to a p-wave top pair. The only p-wave spherical

harmonic that does not vanish along the z-axis is Y10, so the spatial wave function cannot

contribute to the value of lz and thus the tops cannot couple to the Lz = ±2 polarizations.

Furthermore, the coupling v̄(p)γµu(p′) vanishes when the quarks have the same helicity, so

there is no coupling to the Lz = 0 polarization either. Thus the total cross-section vanishes
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Figure 5: Generic Sample of 100 gg → G → tt̄ events. The results of a Monte Carlo of 100

spin-2 events are shown on top of the expected results for a spin-0, spin-1, and spin-2 resonance.

Events have been removed both from the expected curves and the Monte Carlo events if they are

too close to forward or backward scattering to be likely to be observed (that is, if pseudo-rapidity

η > 2.5 − ln 2).

along the z-axis, as shown in figure 5.

Note that the fact that the KK-graviton has spin 2 could be used to our advantage in

top identification — it may be possible to cut down on background by using the angular

distribution of the tops to preferentially select the central region of phase space in figure 5.

5. Conclusion

We have considered the LHC signatures of a KK graviton within the context of RSI, when

the top quarks are localized very near the TeV brane and the lighter quarks are localized

near the Planck brane. We computed the cross-section for KK gravitons in this model and

the discovery reach from tt̄ pairs. We find that the KK graviton resonance is very narrow,

its width being less than a few percent of its mass even for M4/k very close to 1, which

is distinctly different from the case when all fermions are localized on the brane and there

is a large number of possible decays for the graviton. The dominant production/decay

mechanism is gluons → graviton → tt̄, and in this case the angular distribution of the

cross-section is easier to distinguish from that of a spin-1 resonance than in models with

fermions on the brane. The reason is that conservation of angular momentum forces the

cross-section to vanish at forward and backward scattering for a spin-2 resonance, whereas

the cross-section increases at forward and backward scattering for a spin-1 resonance. We

find that the spin-2 distribution can be resolved with ∼ 100 events. In on-the-brane models,
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the dominant production/decay mechanism is fermions → graviton → fermions, and the

spin-2 nature of the graviton is not as obvious. In other models, where the left handed

quark doublet of the third generation is largely composite, both the rate of KK-graviton

production and its branching ratio to top and bottom quarks could be larger. Thus KK-

graviton phenomenology in these models deserves further study.

We find that the collider reach for detection is mgrav . 1.7TeV , and depends on the

AdS curvature scale. Detecting the graviton at the limits of the collider reach depends

on efficient reconstruction of the top decay products, and further work is necessary to

determine how efficiently this can be done in practice. Because the tops result from the

decay of a very massive graviton, they will be highly boosted and thus their decay products

come out in a narrow cone (0.4 . δR . 2.0, depending on the KK graviton mass).
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work [20], focusing on KK graviton decays to W’s, and arguing that a slightly lower limit

on M4L is allowed than that considered here.

A. Goldstone boson equivalence on the brane

The coupling between the W bosons and the graviton is difficult to calculate in the 5d

theory. A precise calculation would involve writing down the 5d equations of motion for

the gauge fields (which have no bulk mass term), writing down the symmetry-breaking

Higgs terms on the TeV brane, and solving for the wavefunctions and mass eigenmodes

satisfying the modified boundary conditions. Then, these would be integrated against

the graviton wavefunction. The rough picture for the 5d wavefunctions is that, before

symmetry-breaking, the gauge bosons start out with flat wavefunctions and the Higgs

starts out with a delta function wavefunction on the brane. After symmetry-breaking, the

gauge bosons eat a Higgs, and their wavefunctions are still mostly flat in the bulk but dip

sharply near the brane.

A much easier and more transparent method is to go directly to the effective KK theory

before including the effects of symmetry-breaking. Then, the W bosons pick up a mass

from the usual Higgs mechanism in 4d, and their couplings are determined from the Higgs

couplings by the usual Goldstone boson equivalence theorem, which states

ǫµ1ǫµ2 . . . ǫµnΓµ1µ2...µn = Γ (A.1)
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Figure 6: When the Higgs gets a vev, the boundary conditions for the wavefunction of the W

boson are modified, and the wavefunction dips down near the TeV brane.

where Γµ1µ2...µn is the vertex for n W bosons, ǫµi are the longitudinal polarization vectors,

and Γ is the vertex for n Higgses. This can be seen directly at the level of the lagrangian

as well. The Higgs kinetic and interaction term are

L ⊃ (∂H)2 + cssG∂µH∂νHhµν (A.2)

where cssG is calculated using only the graviton wavefunction. Gauge invariance then

constrains the W interaction terms to arise by promoting coordinate derivatives to covariant

derivatives:

L ⊃
(

(∂µ − i
g5ψ(π)

2
Wµ)H

)2

+ cssG

(

∂µH − i
g5ψ(π)

2
WµH

) (

∂νH − i
g5ψ(π)

2
WνH

)

hµν

(A.3)

The factor ψ(π) is the W wavefunction evaluated on the TeV brane. We can absorb this

factor into the coupling:

g4 = g5ψ(π) (A.4)

If v = 〈H〉 is the Higgs vev, then the mass term for W and the coupling to the graviton

can be written

L ⊃
(g4v

2

)2
W 2 + cssG

(g4v

2

)2
WµWνh

µν (A.5)

cssG =
2

(M4L)µTeV
(A.6)

so it is manifest that the coupling of the W to the graviton is just cssG times the mass-

squared. At high energies, the longitudinal polarization ǫµ = pµ

mW
+ O

(

mw
Ep

)

, so the W

coupling to the graviton acts exactly as a Higgs.
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B. Loops

In principle, there are contributions from top loops that could enhance the production cross

section for KK gravitons. These contributions could be relevant because the top coupling

to the KK graviton is much stronger than the gluon coupling, which is suppressed by a

volume factor πkrc.

The KK description of RS is a (Wilsonian) effective field theory defined below the scale

NµTeV. We can write the relevant interactions very schematically as

L ⊃ c1

NµTeV
FµρF

ρ
ν hµν +

c2

NνTeV
hµνiψ†σ̄µDνψ (B.1)

To make predictions, we would in principle match this EFT to a UV description at some

matching scale µmatch, and then we would use the RG running of c1 and c2 to make predic-

tions at any other scale (and we would also have other ci’s for higher order interactions).

However, in our case we do not have an accessible UV description. All we have is a

tree-level matching condition at an unknown matching scale, assumed to be of order the

cutoff. This seems to set a limit on the precision of our predictions. For instance, consider

the amplitude for two gluons and a KK graviton, which is schematically given as

A =
p2

NµTeV

(

c1(µ) +
g2c2(µ)

16π2

)

(B.2)

where µ is the relevant scale. Clearly if the c2 contribution is much smaller than the

contribution from c1, then we should ignore it. However, if

c1(µmatch) ≪ g2c2

16π2
(B.3)

then it would be very unnatural to ignore the loop correction from c2, because even if

c1 is very small at some scale, it will be regenerated by c2. In our case this is especially

true, because we do not even know µmatch. Thus the loop contribution sets a natural lower

bound on c1. Now if

c1(µmatch) &
g2c2

16π2
(B.4)

then we can include the loop correction, but it does not seem to make our analysis more

precise. This is because we only know c1 at tree level, while there are unknown corrections

to it from the one-loop matching at µmatch and from the RG running of the coefficient c1,

and these are of the same order as the loop.

In our case, we found that the top loop contribution is smaller than the tree level

gluon contribution, although they are roughly of the same order of magnitude. This can

be viewed as an additional source of error in our analysis.

C. Analytic cross-section estimates

C.1 W boson fusion

We are interested in approximating the cross-section for q1q2 → q′1q
′
2WW → q′1q

′
2G, where
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G is a graviton.1 The fermion-fermion-W vertex is

gw√
2
ū(q)γµ

(

1 − γ5

2

)

u(q′)Wµ

and the WWG vertex is

ǫµνWµWνm
2
wcssG

We work in the rest frame of the incoming quarks, so their 4-momentum is

q1 + q2 = (2E, 0, 0, 0)

It is convenient to parameterize the outgoing quark energies and the difference in their

directions by

E′
1 = (1 − η)E

E′
2 = (1 − ζ)E

cos θ = −p̂′1 · p̂′2 (C.1)

Denoting the graviton momentum as kµ, its 3-momentum is

~l2 = (~p′1 + ~p′2)
2 = E2

g − m2
g (C.2)

and after some algebra, we find

cos θ = 1 −
2(ηζ − m2

g/4E
2)

(1 − η)(1 − ζ)
(C.3)

The kinematic bounds on η and ζ are therefore ηζ > m2
g/4E

2 and η + ζ < 1 + m2
g/4E

2.

We parameterize the outgoing quark directions by

q̂′1 = (cos α cos β, sin α,− sin β cos α)

q̂′2 = −q̂′1(α → α − θ) (C.4)

We denote the W momenta as k1 = q1 − q′1 and k2 = q2 − q′2. The matrix element squared,

averaged over initial spins and summed over final ones, is therefore

|M |2 =
g4

2
(q1µq′1µ′ − q1 · q′1gµµ′ + q1µ′q′1µ)(q2νq′2ν′ − q2 · q′2gνν′ + q2ν′q′2ν)

×
(

1

k2
1 − m2

w

)2 (

1

k2
2 − m2

w

)2

Dµν;µ′ν′ (C.5)

where Dµν;µ′ν′ is the sum over graviton polarizations, equal to the numerator of the graviton

propagator:

Dµν;µ′ν′ =
1

2

(

Gµµ′Gνν′ + Gµν′Gµ′ν − 2

3
Gµµ′Gνν′

)

Gµν = gµν − kµkν

m2
g

(C.6)

1This section uses the techniques used in deriving the effective W approximation, see [9]
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The W propagators can be simplified:

k2
1 − m2

w = 2E2(1 − η) (x + cos α sin β)

k2
2 − m2

w = 2E2(1 − ζ) (y + cos(α − θ) sin β)

x = 1 +
m2

w

2E2(1 − η)

y = 1 +
m2

w

2E2(1 − ζ)
(C.7)

When E ≫ mw, there is a near-divergence in the W propagators that is cut off by

the W mass, and the dominant contribution to the cross-section comes from θ ∼ 0 and

cos α sin β = −1. We can expand α around π and β around π/2:

α = π − ν

β = π/2 − ǫ

cos α ∼ −1 +
1

2
ν2

sin β ∼ 1 − 1

2
ǫ2

cos(α − θ) ∼ −1 +
1

2
(ν + θ)2 (C.8)

We are left with an expression that is still relatively complicated. We start by focusing on

the ν−,ǫ−, and θ-dependence:

dσ ∝ J(θ) = 16

∫

dνdǫ

(

1 + O(ν2, ǫ2)

2(x − 1) + (ν2 + ǫ2)

)2 (

1 + O(ν2, ǫ2)

2(y − 1) + ((ν + θ)2 + ǫ2)

)2

(C.9)

The leading order term can be evaluated exactly. The O(ν2, ǫ2) terms diverge individually

(of course, they are part of an expansion of cos so they do not diverge if summed up)

so we will drop them. They would lead to a partial cancellation, since we are essentially

approximating cos ν = 1 − 1
2ν2 + . . . by cos ν = 1 near ν = 0 in the numerator. This

amounts to keeping the angular dependence of only the (k2
1−m2

w)−2(k2
2−m2

w)−2 piece in the

amplitude. These are the terms responsible for the divergence (in the limit E ≫ mw) when

the W’s are collinear. Consequently, the remaining terms get their dominant contribution

from θ = 0, so we approximate J ∝ δ(θ2), with proportionality contant given by
∫

dθ2J = 2

∫

θdθJ =
1

π

∫

d2θJ

=
16

π

∫

dνdǫ

(2(x − 1) + (ν2 + ǫ2))2

∫

dθxdθy

(2(y − 1) + ((ν + θx)2 + (ǫ + θy)2)2

=
4π

(x − 1)(y − 1)
(C.10)

So, in this approximation,

J =

∫

dαd cos β

(

1

k2
1 − m2

w

)2 (

1

k2
2 − m2

w

)2

=
4π

(x − 1)(y − 1)
δ(θ2) (C.11)
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The rest of dσ can now be evaluated at this level of approximation by a straightforward

but tedious computation, since α = π, β = π/2 and θ = 0:

(k2
1 −m2

w)2(k2
2 −m2

w)dσ =
16

3
E4(1−ζ)(1−η)(1−ζη+ζ2η2)×

(

g42−10π−4m4
wc2

ssG

)

(C.12)

Putting everything together and using θ2 =
4(ηζ−m2

g/4E2)

(1−η)(1−ζ) from above, we get

σ =

∫ 1

m2
g/4E2

dη

∫ 1+(m2
g/4E2)−η

m2
g/4E2

dζ
g4

212π4

16π

3

1

m4
w

(1 − ζη + ζ2η2)δ(
4(ηζ − m2

g/4E
2)

(1 − η)(1 − ζ)
m4

wc2
ssG

=
g4

(3)210π3
c2
ssG(1 − τ̂ + τ̂2)

(

(1 + τ̂) log

(

1

τ̂

)

− 2(1 − τ̂)

)

(C.13)

where τ̂ =
m2

g

4E2 =
m2

g

ŝ . This contains the usual luminosity function −((1+τ̂) log(τ̂)+2(1−τ̂))

for effective longitudinal W’s, as well as an additional piece from the spin structure of the

resonance. We convolve this with the fermion luminosity function

∂L
∂τ

= 2

∫ 1

τ

dx

x
f+(x)f−(τ/x)dτ (C.14)

where f+ is the sum of pdfs for the positively charged fermions and f− is for the negatively

charged ones. The cross-section is then

∫ 1

τ̂

∂L
∂τ

(τ)σ(τ)

To evaluate this numerically, we used the CTEQ5M parton distribution functions in their

Mathematica distribution package [10]. We compare this with the results of the Monte

Carlo integration below:

mgrav (TeV) σest (fb) σprog (fb) mgrav (TeV) σest (fb) σprog (fb)

0.5 47 62 2.5 0.012 0.0089

1.0 2.3 2.3 3.0 0.0029 0.0022

1.5 0.29 0.25 3.5 0.00079 0.00056

2.0 0.053 0.042 4.0 0.00022 0.00016

For the convenience of the reader, we found that the CTEQ5M pdf’s at an energy scale

Q = 200TeV can be parameterized by

xg(x) =
1.549e−3.113x1/3

(1 − x)5.448

x0.5270

xu(x) =
0.02596e7.667

√
x(1 − x)7.273

x0.6125

xd(x) =
0.04735e4.309

√
x(1 − x)6.203

x0.5267
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C.2 Gluon fusion

Since the gluon fusion is a two-to-two decay, it can be evaluated exactly. The amplitude is

M = T µν
gluonDµν;µ′ν′T µ′ν′

top (C.15)

This implies that the cross-section is

dσ

d cos θ
=

5

64

m4
g

ŝ
(1 − cos4 θ)c2

AAG

m−3
g Γtt̄

(

ŝ
m2

g
− 1

)2
+

Γ2
tot

m2
g

(C.16)

Integrating over cos θ, we find

σ =
1

8

τ

τ̂

(

0.47

(35)(2.5)(mg/3.83)

)2 mgΓtt̄
(

τ̂
τ − 1

)2
+ Γ2

m2
g

(C.17)

To get the full cross-section, we convolve this with the gluon luminosity function:

σtot =

∫ 1

τ̂

∂L
∂τ

σ(τ̂ , τ)dτ (C.18)

Comparison with the Monte Carlo integration is shown below (setting Γtt̄ = Γtot, so this

calculates the total graviton production cross-section, without the branching ratio of sub-

sequent decay to tops):

mgrav (TeV) σest (fb) σprog (fb) mgrav (TeV) σest (fb) σprog (fb)

0.5 2500 1300 2.5 0.32 0.40

1.0 85 91 3.0 0.078 0.098

1.5 9.0 11. 3.5 0.021 0.026

2.0 1.5 1.8 4.0 0.0061 0.0077
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